18. 18. 18. 18. 18. 18. 18. 18. 18.

UNIVERSITY OF EAST SARAJEVO

Faculty of Technology

I STUDY CYCLE

II STUDY YEAR

Course r	name
Denartm	ent

ENGINEERING THREMODYNAMICS

artment Department for process engineering-Faculty of Technology

Course code		Course status Semester		ECTS	
		Obligatory	III	6	
Tacabar	DhD Miter Derusia full professor				

Teacher PhD Mitar Perusic, full professor

Assistant Dusko Kostic, assistant

Hours number (weekly)			Individual work (hours per semester)			Student's work coefficient, S _o	
Lectures	Class Exercises	Laboratory Exercises	Lectur	es	Class Exercises	Laboratory Exercises	So
3	2	0	45		30	0	1.4
Total hours number (hours per semester) 3*15 + 2*15 + 0*15 = 75					s number (hours +2*15*1.40 + 0*1		

Total hours number (hours per semester, teacher + student): 75+ 105 = 180

Learning outcomes

- 1. To find and use literature data related to energy and thermodynamics of the system;
- 2. To recognize the thermodynamic system, knowledge of the thermodynamic properties of ideal and real gases and vapors;
- 3. Mathematically analyze energy transfer across the boundaries of the thermodynamic system;
- 4. Analyze thermodynamic cycles;
- 5. Analyze, solve, present task solutions and compare results, and recognize the application and importance of thermodynamics in practice. Know the difference between an ideal and a real thermodynamic process.

Conditionality Teaching methods

No.

Lectures, class exercises and individual work

- 1. Introduction to the course. Basic concepts of thermodynamics. The concept and forms of energy. Units and dimensions.
- 2. Ideal gas. Ideal gas equation-thermodynamic aspects.
- 3. Working body energy. Internal energy and amount of heat. Thermal capacity.
- The term thermodynamic system. The first principle of thermodynamics, definition and mathematical model.
- 5. The concept of enthalpy. Examples of enthalpy changes in the thermodynamic system in chemical reactions. State changes in the p-v coordinate system.
- The second principle of thermodynamics. Entropy and mathematical model of the second principle of thermodynamics. Examples of the change in entropy of a thermodynamic system in chemical reactions. Colloquium 1.

Course content per weeks

- 7. Reverse and irreversible processes. Circular processes.
- 8. Thermal T-s diagram and state changes.
- 9. Invert the Carnot cycle.
- 10. Joule return cycle.
- 11. Maximum operation.
- 12. Real gases and vapors. Deviations from the ideal gas equation of state.
- 13. Phase transformations and latent heat. Water and physicochemical properties of water. Water vapor as a working medium.
- 14. Diagrams p-v, T-s and h-s for water vapor.
- 15. Carnot's and Rankin-Clausius cycle for water vapor. Analysis of engineering thermodynamics chapters (seminar paper presentation). Colloquium 2.

Obligatory literature							
Author/s	Year	Page					
D. Malic	Thermodynamic and Thermotechnik, GK, Beograd, 7 th issue	1977	1-92				
Additional literature							
Author/s	Year	Page					
B. Pejovic, M. Perusic	Thermodynamic for engineers-solution manual, Faculty of Technology	2012	1-332				
M. Novakovic, M. Djuric	Technical thermodynamic, Faculty of Technology, Novi Sad	1998	1-304				

O. Singh		Applied Thermodynamics, New Age International Limited			1-330	
B. Djordjevic, V. Valent, S. Serbanovic		Solution manual, Thermodynamic and Thermmotechnic, TMF, Belgrade		1-223		
	Types of evaluation				Percentage	
	Pre-exam	obligation				
Obligations, types of knowledge evaluation, final assessment	Lectures and exercises participation and activity				6 %	
	Seminar work				14 %	
	Colloquium 1				25 %	
	Colloquium2				25 %	
	Final exam					
	Final exam (verbal)			30	30 %	
	TOTAL			100	100 %	
Web pages	www.tfzv.	ues.rs.ba				
Date						